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Landauer’s principle, often regarded as the basic 
principle of the thermodynamics of information 
processing, holds that any logically irreversible 
manipulation of data ...must be accompanied by a 
corresponding entropy increase in non-information  
bearing degrees of freedom of the information 
processing apparatus or its environment. 
Conversely, it is generally accepted, any logically 
reversible transformation of information can in principle 
be accomplished by an appropriate physical 
mechanism operating in a 
thermodynamically reversible fashion 
Bennet,2003	  

….. logically irreversible operations can be 
implemented without generating heat.  
Any logically irreversible transformation of information 
can in principle be accomplished by an appropriate 
physical mechanism operating in a  
thermodynamically reversible fashion”  
“………it is possible to show that information and 
entropy, while having the same form, are conceptually 
different    
Maroney,2008	  



Can we perform logically irreversible computation in a 
thermodynamically reversible manner? 
 
 

Possibili'es	   Thermodynamically	  
reversible	  

Thermodynamically	  
irreversible	  

Logically	  
reversible	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  !	   	  	  	  	  	  	  	  	  	  	  	  !	  

Logically	  
irreversible	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  !	   	  	  	  	  	  	  	  	  	  	  	  !	  

Can we perform logically irreversible computation without 
dissipating heat in the environment? 
	  
Are these two questions two different questions? 
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§  Landauer principle: information is physical 
    àinformation theory 
    àthermodynamics 

§  Physical systems obey the II law of thermodynamics, always true? 
    àMaxwell demon 
    àSzilard engine 

§  Relevant for the engineering of devices used to process information: 
     Landauer principle: fundamental bound on energy dissipation ⇒ 
     energy consumption: 
     Landauer bound + how good we are in engineering devices 
 
     Landauer bound + how good we are in engineering devices? 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	       
    (at least in principle) 



Maxwell demon 

Information is gained 
à sorting of the molecules 
à temperature difference (decrease of entropy 

without work) that can be used to produce 
work 

à apparent violation of the second law 
	  
	  

Gas in a partitioned box (Maxwell 1861) 

demon can measures  the 
speed of the molecules 
(thermodynamically reversible)  



Szilard engine 
•  One-‐par(cle	  gas	  in	  a	  par((oned	  box	  	  	  (	  Szilard	  1929)	  

The demon performs a measure to determine 
the position of the particle  (no heat production): 
information is gained 

Initial probability ½ of the atom being on either 
side of the barrier  

The piston is moved to one side or the other:   
extract work W= kT ln 2 that can be used to lift a 
weight 

Apparent violation of the II law  



Landauer principle 
Resolution of the puzzle: forgetting is costly ! 
  (Landauer 1961) 

§  Szilard engine: the Demon has a single memory 
register (0,1), initially 0; after measure it represents 
the location of the particle, 0 or 1 

§  To complete the cycle the memory of the Demon must be erased 
(information lost)	  

§  Landauer principle: erasure of information requires a minimun 
heat production:  ⟨Q⟩ ≥ ⟨QLandauer>= kT  ln2  per bit ⇒ 

    the conversion of kTln2 work into heat compensats the work 
    extracted!  
§  Information is physical  
	  



§  Information is transmitted trough  
    physical systems 

§  Experimental verification: 
ü  Szilard engine: brownian particle in a tilted periodic potential (Toyabe et al. 

Nature 2010) àdemonstration of information to work conversion 
ü  Landauer principle: brownian particle in a double-well potential (Berut et al.  
     Nature 2012) 
     àmean dissipated heat saturates Landauer bound 

§  information is processed trough  
     physical systems 
	  

§  Information is stored in physical 
     systems 
	  



What is Information? 
(Shannon 1948) 

Common language: spin can be up or down ⇒ 
the only instruction we need to transmit to  
recreate the state is whether the state is spin-up 
or spin-down 	  

§  Information content of an object = the size of the set of instructions 
required to reconstruct the state of the object  

§  a complicated set of instructions can be reduced  to n binary choices à 
information content = number of binary choices i.e. number of bits ≡ 
classical variables that can assume only the values 0 or 1 with probability 

     p(0) = p0  and  p(1) = p1  (alphabet with 2 letters),  ∑I pi = 1 

.	  	  
	  

The	  amount	  of	  info	  gained	  from	  the	  recep(on	  of	  a	  
message	  depends	  on	  how	  likely	  it	  is	  (Shannon)	  

§  Construct a measure for the amount of information associated with a message:  
     the less likely a message is, the more info gained upon its reception!  



§  Generalize to an alphabet of M letters,  with probability p(m),  m∈M,   
    and ∑m∈ M p(m) = 1 and p(m) ≥ 0: 
    H(M) = -  ∑xm∈ M   p(m) log p(m) 

Shannon Entropy 
§  Measure the “surprise” content of a letter i with probability pi:  log1/pi  ≥ 0 

1.  additive: log (1/pi 1/pj) = log1/pi  +  log1/pj  
2.  the greater pi is, the more certain the letter i  ⇒ less  
      information should be associated with it.  

§  Compute the average   “surprise” :  
     H =  ∑1

i=0 pi log 1/pi  = -  ∑1
i=0 pi log pi   ≥ 0   Shannon entropy 

§  H(M) tells us our expected information gain  upon measuring M  

(In the following log2 à ln and drop the ln2) 



Conditional entropy and Mutual 
Information 

§  joint probability p(m,n)  of two events m, n  is the probability of 
event m occurring at the same time event n occurs;  

     p(n) =  ∑m ∈ M p(m,n);  p(m) =  ∑n∈ M’ p(m,n)  
     p(m,n)= p(m)p(n), m and n independent    
     à H = - ∑m∈M ∑n∈M’  p(m,n) ln p(m,n)  joint entropy 

	  	  	  

§  conditional probability p(n|m): probability of the event n, given that  
    event m has occurred; p(m,n) = p(n|m) p(m) 
     à  H(M’|M) = - ∑m∈M  p(m) ∑n∈M’ p(n|m) ln p(n|m) conditional entropy 
     H(M’|M) measures the average uncertainty about the value of an output, 
     given a particular input value.  

Example:	  Drawing	  2	  Kings	  from	  a	  Deck,m=	  drawing	  a	  King	  first,	  n	  =drawing	  a	  King	  second	  
p(m)	  =	  4/52	  (there	  are	  4	  Kings	  in	  a	  Deck	  of	  52	  cards)	  
aaer	  removing	  a	  King	  from	  the	  deck	  the	  probability	  of	  the	  2nd	  card	  drawn	  is	  less	  likely	  to	  be	  
a	  King	  (only	  3	  of	  the	  51	  cards	  lea	  are	  Kings)⇒	  p(n|m)	  =	  3/51	  
p(m,n)=	  p(n|m)	  p(m)	  =	  (4/52)	  x	  (3/51)	  =	  1/221≈0.5%	  



§  Mutual information I(M;M’) = relative entropy between joint distribution and 
product distribution:  

     I(M;M’) = ∑m∈M ∑n∈M’  p(m,n) ln p(m,n) /(p(m) p(n))  
    is a measure of the amount of information a random  variable contains  
    about  another random variables 
    m, n independent ⇒ p(m,n) = p(m) p(n) 
    ⇒ I(M;M’) = 0 

§  Bayes’ theorem:  p(m|n) =(p(n|m) p(m)) / p(n) 

§  relative entropy or Kullback-Leibler distance between two  
    distribution p(m) and q(m):  D(p||q) = ∑ m∈M’  p(m)  ln (p(m)/q(m)) ≥ 0 
	  

§  If m is a continuous variable the sums are replaced by integrals 
	  

§   I(M;M’) = H(M) – H(M|M’) = H(M’) – H(M’|M) = H(M) +H(M’) – H(M,M’) 
      I(M;M’) =  I(M’;M) ; I(M;M) = H(M)	  



Logical Operations 

1.  logically reversible deterministic: NOT: 0 (1) à 1(0) 
      ∆H = 0  
 2.   logically irreversible deterministic: RTZ: {0,1} à 0 
       ∆H < 0  
 

§  A logical operation maps a set of inputs states m∈M to a set of output 
states n∈M’:       LO:   m → n 

	  

§  Logically reversible operations: the output of the devices uniquely 
    defines the input:  
   ∀ m, n p(m|n) ∈ {0,1} or  ∀ n : p(n|m) ≠ 0 ⇒  p(n|m’)=0 ∀ m’ ≠ m 
	  

§  Logically deterministic operations: the input of the devices uniquely  
    defines the output:  
    ∀ m, n p(n|m) ∈ {0,1} or  ∀ m : p(m|n) ≠ 0 ⇒  p(m|n’)= 0 ∀ n’ ≠ n	  



3.  logically reversible indeterministic: UFZ: 0 à {0,1}  
     ∆ H > 0 
4.  logically irreversible indeterministic: RND: {0,1} à {0,1} 
     ∆ H = 0 (if p(0)= p(1) = ½ both for input and output states) 

1.  significant role in the theory of computational complexity classes for 
actual computers;  in some cases inclusion of logically 
indeterministic operations can produce an accurate answer 
exponentially faster than any known algorithm consisting only of 
logically deterministic operations 

 
2.  more coherent general framework for the thermodynamics of 

computation; properties ascribed to logically irreversible operations 
may be artefacts of the asymmetry caused by exclusion; 

 
3.  no special reason not to include, natural counterpart to the concept 

of logically irreversible operations; conclusions that applies to the 
set of all such logical operations must necessarily apply to all 
logically deterministic operations	  

§  Why add them: 



One-bit erasure (RTZ) 
Two logical states memory: {0,1} à 0 
 
§  Initial configuration: two logical states with equal probability ½ 
     Shannon entropy Hi = -∑I pi ln pi = ln 2 
§  Final configuration: one logical state with probability 1, Hf = 0 
§  ∆ H = - ln2 
§  More logical input states then output à the computational process 

is not an injection à logically irreversible  
     Information is physical à II law of thermodynamic  
     ∆ Stot = ∆ Ssyst + ∆ Sres   ≥ 0  ;   T∆ Sres = Qres       ∆ Ssyst  = -k T ln2  
§  Heat is produced during a logically irreversible computation 
                   Qres  ≥  k T ln2 = - k T ∆ H  

 



Thermodynamic reversibility 
§  Work done during a quasi-static isothermal erasure 
     ideal gas 
     step1: free expansion W= 0 
     step 2: isothermal quasi-static 
     compression: W= -∫VV/2PdV = - Nk T[ln(V/2)−lnV]= 
     = NkT ln2 ;   ∆ U = 0 ⇒ Qsys = - W 

§  A process is thermodynamically reversible if  ∆ Stot= ∆ Ssyst+Qres/T =0 
§   in this case ∆ Stot = k (-ln 2)  + k(ln2) =0 thermodynamically reversible 
§  Qres =  k T ln2  during a quasi-static  computational process, no 

contradiction with Landauer principle 
       
      §  At finite velocity  Qres >  k T ln2 
§    Thermodynamic and logical reversibility  are not equivalent! 
	  

But this does not mean that you do not generate heat!	  



Physical implementation of the 
memory 

§  Y phase space of the memory ⇒ y∈Y microscopic physical state of the 
memory; M set of possible logical states, m∈M logic state; in general 
we have many physical states that correspond to a single logical state 

Y0	   Y1	  

m0	   m1	  

§  Physical phase space:  Y = ⋃ m ∈M Ym   
§   Ym  ∩ Yn = ∅ m≠ n to ensure that one phase space point belongs to 

only one logical state ⇒   p(y|m) ≠ 0 ⟷ y ∈ Ym 

0	  

§  Two states memory implemented through a 
symmetric bistable potential: left well (y< 0) 

     logical state m0; right well (y≥0) logical  
     state m1  



Input state: 
§  m∈ M logical state with probability p(m), 
§   y ∈ Ym   initial phase-space point with probability p(y) , 
§  p(m) =∫y ∈ Y dy  p(y|m)p(y) = ∫y ∈ Ym dy p(y)   since  p(y|m) ≠ 0 ⟷ y ∈ Ym	  
§  p(y) = ∑m∈M p(y|m) p(m)	  
Output  state: 
§   n∈ M’ logical state with probability p(n), 
§   y’ ∈ Yn   final phase-space point with probability p(y’) , 
§  p(n) =∫y’ ∈ Y dy’  p(y’|n)p(y) = ∫y’ ∈ Yn dy’ p(y’)   since  p(y’|n) ≠ 0 ⟷ y’ ∈ Yn	  
§  p(y’) = ∑n∈M’ p(y’|n) p(n)	  

Logical operation LO: m à n  implemented through a physical transformation              
from the  initial state y ∈ Ym à y’ ∈ Yn    

 reliability of the implementation 
consists …(in  ensuring) that 

whichever of the representative 
physical states (physical state of 

the device that corresponds to the 
possible logical states)  the device 

is prepared in, it ends up in the 
appropriate representative state 

(Ladyman et al.)	  

a	  physical	  process	  is	  a	  change	  in	  a	  physical	  
system	  whereby	  it	  goes	  from	  a	  par(cular	  
physical	  state	  to	  a	  par(cular	  physical	  state.	  
Hence,	  strictly	  speaking	  a	  physical	  process	  
cannot	  be	  said	  to	  implement	  a	  logical	  

transforma(on	  because	  all	  it	  could	  ever	  do	  is	  
implement	  the	  part	  of	  the	  map	  that	  takes	  one	  
of	  the	  logical	  input	  states	  to	  another	  logical	  

input	  state	  (Ladyman)	  



§  Particle in a box: 

§  Symmetric	  bistable	  poten(al	  

Berut	  et	  al.	  

Removal of the barrier  
(memory is erased, but not reset) 

Removal of the barrier  
(memory is erased, but not reset) 

(if we know the position, Feynman Lectures on Computation) 



Entropy 

§  Entropy of the physical system, Gibbs entropy:  
     Ssyst(Y) = - k ∫y∈Y  dy  p(y) ln p(y)  

§  Logical entropy :  H(M) = - ∑m∈M p(m) ln p(m)	  

§  These two entropies are related: 
      Ssyst (Y) = k H(M) + S (Y|M) 
     S (Y|M) = ∑m∈M p(m) S(Y|m) ;  S(Y|m)= -k ∫y ∈ Ymdy p(y|m) ln p(y|m)  
      

§  Physical system implementing the memory in contact with a heat bath 
      at temperature T ⇒ Stot = Ssys  + Sres 



§  fluctuations over the whole phase space (physical device) = fluctuations  
     of logical states + fluctuations in the physical space corresponding 
     to individual  logical subspace 

§  In fact:   

     Ssyst (Y) = -k ∫y ∈ Y  dy  p(y) ln p(y) = 

      = -k ∫y∈Y dy ∑m∈M p(y|m) p(m) ln ∑n∈M p(y|n) p(n)  

      but  p(y|m) ≠ 0 ⟷ y ∈ Ym  ⇒ 

     ⇒ - ∑m∈M k ∫y ∈ Ymdy p(y|m) p(m) ln p(y|m) p(m) =  

       = - ∑m∈Mk ∫y∈Ymdy p(y|m) p(m) ln p(y|m) + 

      - ∑m∈Mk ∫y ∈ Ymdy p(y|m) p(m) ln p(m)= 

     ( since  ∫y ∈ Ymdy p(y|m) = 1) 

     = -∑m∈M p(m) S(Y|m)   -k H(M) =  

     = k H(M) + S (Y|M)      



Generalized Landauer principle 

§  Entropy variation during computation (Sagawa, Maroney): 
     ∆Ssyst = k ∆H + ∆Scond   

        with  ∆Ssyst = S’
syst

 (Y) – Ssyst(Y) ;  
     ∆H = H’(M’) – H(M)  ;  ∆Scond  = S’(Y|M’) – S(Y|M) 
 
 
	  
 

     

§  II law of thermodynamic:   ∆ Stot = ∆ Ssyst + ∆ Sres ≥  0 ⇒ 
     ⇒ ∆ Stot = k ∆H + ∆Scond +  Qres/T ≥  0 

§    Qres ≥ - k T ∆H - T ∆Scond  generalized Landauer limit  
      the change in the Shannon entropy during a logically irreversible 
      computation can be compensated by the increase in the  
      entropy of the  heat bath and by the increase in the entropy  
      of  physical states inside a logical subspace 



§   ∆Scond +  Qres/T ≥  - k ∆H   a transformation of information requires  
     an increase  of entropy of the non-information bearing  
     degrees of freedom  (NIBDF) of at least  the change in  
     the Shannon entropy 

§    possibility of realizing erasure process with less heat emission: 
    Qres ≥ - k T ∆H - T∆Scond  

     Qres ≥ 0      if    – k ∆H =  ∆Scond  
 
      	  

§  if  Qres=- kT∆H -T ∆Scond  ⇒    ∆Stot   = 0 , lower bound satisfied in  
     ∆Stot  ≥ 0 ⇒ the computation is thermodynamically reversible 
    (quasi-static limit) 

§  thermodynamic reversibility ≣ lower bound satisfied  in ∆Stot ≥ 0 
§  satisfied in ≥ 



§ 	  	    Qres ≥ - k T∆H    if      ∆Scond = 0 conventional Landauer limit 
	  
	  

§  Why in the theoretical and experimental verifications of 
Landauer principle   ∆Scond = 0 ? 

    general setup for one bit erasure  
   (e.g.: Berut et al.; Piechocinska) 

§  symmetric bistable potential with a 
barrier of height ∆U  

     ∆U >> kT⇒ ∆Scond = 0 
     (more in the talk of Dr Chiuchiu’)  

§  optimization of the thermodynamic implementation 
        



Optimization (Maroney) 

w1L wmL 

§  Generalized particle in a box model: 
     transition m à n:  p(n|m)  
     p(m,n) =  p(n|m) p(m) 

L 

§  minimum heat generated (average over input probability distribution) for  
     p(m)	  =	  wm	  :	  
    ∆Q =  – T (∆Scond + k ∆H ) optimum process 
    ∆Q > – T (∆Scond + k ∆H ) non-optimum process 

§  variation of wm used to optimize  the process subject to the 
constraints: ∑m∈M wm = 1 and  wn = ∑m’∈M wm’ p(n|m’) 	  

§  true for logical reversible, irreversible, deterministic and  
    indeterministic logical operations 



§  No physical process can implement the same logical transformation  
     with a lower expectation value for work requirement or  heat generation  

§  Optimum process involve various idealizations, e.g. frictionless  
    motion and quasi-static processes ⇒ not achievable  in practice,  
    but possible in principle 
	  

§  Thermodynamically optimization of physical process⇒ knowledge  
    of probability distribution P(m) over all logical input states	  

§  Optimum physical implementation for one input probability distribution ⇏ 
optimum for different input probability distribution  

	  



§  Example:  
     Landauer erasure with non-uniform  probabilities (particle in a box) 
§  input: 0 with probability p ,1 with probability (1-p)  
    ouput: 0 with probability 1     
§  ∆H = [ p ln p + (1- p) ln (1- p)]  
§  add step (step 0) to Landauer erasure (before removing the barrier)  
    ⇒ p(0) = p = w0 , p(1) =1-p = w1 

1/2	   p	   1-‐p	  

   Wtot= Wp + kT ln2 = kT∆H  ⇒ ∆Stot = 0 reversible 

§  Apply the procedure optimize for probabilities p(0) = p(1) = 1/2 
     (no step 0) ⇒ Wtot= kT ln2 
§  ∆Stot = k  ∆H  + k ln 2 = k[ p ln p+(1- p) ln (1- p)] + k ln 2 > 0 for p≠ 1/2 
    not reversible, ∆Stot  = 0 if p= 1/2 

§  Removal of the partition at x=1/2  when probability is p is associated 
     with an uncompensated entropy  increase	  

Wp = -kT[p ln p +  
 +(1- p) ln (1- p) +ln 2] 	  



Logic : determined by change of 
the entropy  in the logical states 

Reversibility 

Thermodynamic: determined by 
change of the entropy  of the  
universe, physical system + heat 
bath (ensemble) 
	  

↙
︀︁︂︃︄︅︆︇︈︉︊︋︌︍︎️

↘
︀︁︂︃︄︅︆︇︈︉︊︋︌︍︎️	  

Thermodynamic versus Logic 
Reversibility 

It is always possible during a computational process to satisfy the 
lower bound in the inequality ∆Stot  ≥ 0 ? The answer depends on 
what is  ∆Stot ≣  what is the thermodynamic entropy 

We considered   ∆Stot  =  ∆Ssyst +  ∆Sres with  ∆Ssyst =   ∆Sgibbs 
 
 ∆Sgibbs = ∆Scond + k∆H 
 
 In this case it is always possible  to have ∆Stot = 0 



Alternative definition (Maroney) 

§  Thermodynamic entropy is the entropy of individual state: S(Y|m) if the 
system is in the m logical state; for a transition màn, that occurs with 
probability  p(m|n),  

      ∆Stot(m,n)= S’(Y|n) -  S(Y|m) + Qm,n/T  (NIBDF) 
§  On average  ∆Stot = ∆Scond +  Q/T  ≣ ∆SNIBDF 

§   II law: ∆SNIBDF  ≥ 0 
§  ∆SNIBDF = -k ∆H (optimization of the thermodynamic cost of the transition) 
§  Reversible deterministic logical operations: ∆H = 0 
     (injection between input and output states) ⇒ 
     ⇒ ∆SNIBDF =0 thermodynamically reversible 
§  irreversible deterministic logical operations: ∆H = < 0 (more input states 

corresponds to the same output state) ⇒  
      ⇒ ∆SNIBDF > 0 thermodynamically irreversible 
 
      

       

        



What happens if we consider indeterministic operations? 

§  UFZ: 0 à {0,1} , if p(0) = p(1) = ½  in the  
     output ⇒ ∆H > 0 ⇒ ∆Stot ≣ ∆SNIBDF  < 0  
     wrong measure of the entropy ! 
      
§  Gibbs measure of the entropy, that takes into 
     account the effect of the statistical mixture over 
     the states gives ∆Stot  ≥ 0 

§  Indeterministic operations should not be  taken into account  
     logical operation := single valued map 
     (Ladyman, Presnell, Short, Groisman ) 

……more	  concrete	  statement	  of	  the	  second	  law	  of	  thermodynamics	  which	  is	  
usually	  referred	  to	  as	  the	  Kelvin	  formula(on:	  	  
“It	  is	  impossible	  to	  perform	  a	  cyclic	  process	  with	  no	  other	  result	  than	  that	  heat	  is	  
absorbed	  from	  a	  reservoir,	  and	  work	  is	  performed.”	  (Uffink	  2001,	  p.	  328)	  	  

§  ∆Qres /T = = ∆SNIBDF + k ∆ H ≥ 0 ⇒ ∆SNIBDF  ≥  - k ∆ H  > 0 since the logical  
    operation is irreversible ⇒ thermodynamic irreversibility  



LE + RLE Cycle 
RTZ + UFZ 

§  RTZ	  (LE):	  	  ini(al	  probability	  uniformly	  distributed	  (p
(0)	  =	  p(1)	  =1/2	  )	  

	  	  	  	  	  	  during	  the	  compression	  work	  is	  done	  on	  the	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  system,	  work	  required	  kTln2	  	  
§  UFZ	  (RLE):	  during	  the	  expansions	  work	  is	  extracted	  

from	  the	  system,	  work	  extracted	  	  kTln2	  
	  	  	  	  	  final	  probability	  uniformly	  distributed	  (p(0)	  =	  p(1)	  
	  	  	  	  	  =1/2	  )	  	  

§  The	  work	  done	  to	  reset	  the	  bit	  during	  LE	  is	  recovered	  during	  the	  expansion	  in	  the	  
RLE	  ⇒	  the	  en(re	  process	  is	  thermodynamically	  reversible	  

§  	  If	  	  ini(al	  distribu(on	  in	  the	  RTZ	  and	  final	  distribu(on	  in	  the	  UFZ	  match	  	  
	  	  	  	  	  	  ⇒	  LE	  +	  RLE	  is	  a	  reversible	  cycle	  

memory erasure and resetting is always logically 
irreversible but it is thermodynamically reversible only 
when the initial memory ensemble is distributed 
uniformly among 0 and 1 states (Leff and Rex)  



LE+RLE Cycle  
Non-uniform Probabilities 

	  
	  

	  	  	  	  
	  

p	  

cm	  

1	  

1.  Isothermally move the partition to the right W1= -kT ln2 
(extract work) 

2.  Insert the partition at x=p 
3.  Isothermally move the partition to the center,  
     mean work W2= kT[p ln p + (1- p) ln (1- p) +ln 2] 
     W1 + W2 =  kT[p ln p + (1- p) ln (1- p)] ≤ 0   

§  Particle on the left side with certainty 

    	  

§  RLE(p): p	  

1-‐p	  §  Input: 0 with probability p(0) =1 
    Output: 0 with probability p(0) =p ; 1 with  
    probability  p(1) =1 - p 



§  LE(p): 

1.  Isothermally move the partition to the position x=p, mean work  
      W3= -kT[p ln p + (1- p) ln (1- p) +ln 2] 
2.  Remove the partition 
3.  Insert the partition to the right and isothermally move it 
     to the center ,W4= kTln2       

§  W1 + W2+ W3 + W4 = 0   
 
§  RLE and LE optimized for the same probability distribution ⇒ 
    reversible cycle 

§  W3 + W4 = - kT[p ln p + (1- p) ln (1- p)]  
 



§  RLE and LE optimized for different probability distributions: 
    RLE(p) + LE(p’) 

1.  Isothermally move the partition to the position x=p’, mean work  
      W5= -kT[p ln p’ + (1- p) ln (1- p’) +ln 2] 
2.  Remove the partition 
3.  Insert the partition to the right and isothermally move it to the center,  
     W6= kTln2 
     W5 + W6 = - kT[p ln p’ + (1- p) ln (1- p’)]        

§  W1 + W2+ W5 + W6= kT [p ln (p/p’) + (1- p) ln ((1- p)/(1-p’)] ≥ 0 
§  Equality occurs when p= p’ 
§  The cycle is thermodynamically irreversible for p ≠ p’ 
§  Removal of the partition at x=p’ when probability is p is associated with an 
     uncompensated entropy  increase	  

§  LE(p’): 



Adiabatic computing 

§  Optimum process (Maroney):  
    ∆Qres ≥ – T (∆Scond + k ∆H ) = 
    = - T[ ∑mp(m)[ (S(Y|m)-k ln p(m)] - ∑np(n)[ (S’(Y|n)-k ln p(n)] ] 
 
    ∆W ≥ ∑mp(m)[ Em- T (S(Y|m)-k ln p(m)] - ∑np(n)[ En- T (S’(Y|n)-k ln p(n)]  
	  

§  Uniform computing: isothermal and physical states that represents  
     logical states have same entropy and mean energy  
    ∑np(n) En =∑mp(m) Em           ∑mp(m) S(Y|m) =∑np(n) S’(Y|n) ⇒ 
    ∆W ≥ - kT ∆H 

§  If   ∑mp(m)[ Em- T (S(Y|m)-k ln p(m)] =   ∑np(n)[ En- T (S’(Y|n)-k ln p(n)]  
     ⇒ ∆W ≥ 0   ∆Qres ≥ T ∆Ssys 

      if ∑mp(m)[ (S(Y|m)-k ln p(m)] =  ∑np(n)[ (S’(Y|n)-k ln p(n)]  
    ⇒∆Qres ≥  0   ∆W ≥ ∆U 
    (Em- T (S(Y|m)-k ln p(m) = C a device dependent constant, input and output  
    states canonically distributed)	  



1.  ∑mp(m)[ Em- T (S(Y|m)-k ln p(m))] =   ∑np(n)[ En- T (S’(Y|n)-k ln p(n))]  
2.  ∑mp(m)[ (S(Y|m)-k ln p(m)] =  ∑np(n)[ (S’(Y|n)-k ln p(n)] = C where C is a 

device dependent constant; En = Em = E 
     ∆Qres ≥  0   ∆W ≥ 0 

§  Adiabatic  equilibrium computing: 

….suggests that it is possible to design 
a computer to perform any combination 
of logical operations, with no exchange 

of heat with the environment and 
requires no work to be performed upon 
it. This must be as true for  (all ) logical 

operations  

Logically deterministic, irreversible 
computations are able to avoid 

generating heat, in this model, by 
increasing the size of the physical 

states representing the logical states. 
This does not mean that the logical 

processing apparatus itself needs to be 
increasing in size. Although the size of 
the individual states has increased, the 
number of logical states has decreased 

(by the definition of a logically 
deterministic, irreversible computation!).	  	  



RLE + LE Cycle 
Abiabatic Computing 

§  RLE(p) (UFZ): input state  0 with certainty, but now the particle occupies   
     the entire box   

§  Only one step, insert the barrier at x=p ⇒decrease in average state 
      entropy by:  p ln p + (1- p) ln (1- p)  but this is compensated by  
     the increase in the mixing entropy 

§  LE(p) (RTZ): input state 0 with probability p and 1 with probability 1-p 

§  Only one step, remove the barrier ⇒ increase in average state entropy by:   
     p ln p + (1- p) ln (1- p)  but this is compensated by the decrease 
    in the mixing entropy 



§  If S(Y|m ) is independent on m ⇒∆Scond   = 0 
     symmetric memories 

§  M=M’;  Y=Y’ and p(y|m) = p’(y|m) initial and final distributions  
    inside logical subspace are the same ⇒  S(Y|m) = S’(Y|m) 

§  ∆Scond = ∑m [ p’(m) – p(m)] (S(Y|m) 	  

§  Do we need asymmetric memories? 
    (talk of Dr. Chiuchiu’) 



Conclusions 

Can we perform logically irreversible computation in a 
thermodynamically reversible manner? 

Can we perform logically irreversible computation without 
dissipating heat in the environment? 
	  

Are these two questions two different questions? 

ü  Yes if we use Gibbs entropy ⇒ ∆Ssyst = k ∆H + ∆Scond  

ü  Yes, the decrease in the logical entropy must be compensated by  
     the increase of the entropy inside logical subspace    

ü  Thermodynamic	  reversibility	  ⇏	  no	  dissipa(on	  of	  heat	  	  




